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Abstract 

Summability Theory which began as an independent study few centuries ago, is a part of Number 

Theory and Mathematical Analysis. It is an alternative formulation of obtaining convergence of an 

infinite series which is divergent in the conventional sense. In this paper, we consider infinite sum of 

the kth power of first n natural numbers which is a divergent series and when trying to express in terms 

of a particular integral taken over bounded interval, we obtain nice results. We will prove such results 

in this paper. We have provided the verification of such results.  
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1. Introduction 

The notion of convergence was instrumental to the development of various summability methods. 

Later on, the concept of the absolute summability was developed from the notion of absolute 

convergence. There are various methods due to Abel, Borel, Cesaro. Euler, Norlund, Riemann, Riesz 

and many more. During early years of 20th century, various methods of associating sums with series 

which are neither convergent nor properly divergent were developed as generalization of classical 

concepts of convergence. These methods called "summability methods" have been found incredibly 

useful in the study of divergent series. Pioneer researchers such as Holder, Cesaro, Haudesoff, Borel 

did spectacular work so that summability theory became independently well established and 

considered as part of modern mathematical analysis. In this paper, we will develop one such 

summability method and derive nice results depending upon it.  

 

2. Notations and Definitions 

1.  𝑆𝑘(𝑛) = ∑ 𝑛𝑘

∞

𝑛=1

= 1𝑘 + 2𝑘 + 3𝑘 + 4𝑘 + ⋯            (1) 

 

Sk (n) is the sum of the kth powers of positive integers.         

2.  𝑡𝑘(𝑚) = ∑ 𝑛𝑘

𝒎

𝑛=1

= 1𝑘 + 2𝑘 + 3𝑘 + 4𝑘 + ⋯ + 𝑚𝑘          (2) 

                

𝑡𝑘(m) is the mth   partial sum of Sk (n).  

Definition 

For 𝛼 > 0 we define  

𝑆𝑘,𝛼(𝑛) =  ∫ 𝑡𝑘
𝑏

𝑚= 𝑎
(𝑚) 𝑑𝑚                (3) 
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          where [𝑎, 𝑏] is any interval in R.  

If the integral in RHS of (3) exists, then we say that 𝑆𝑘,𝛼(𝑛) is Summable.   

3. Theorem 1 

If k is an even positive integer, and if 𝑆𝑘,𝛼(𝑛) =  ∫ 𝑡𝑘
𝛼

𝑚= − 𝛼
(𝑚) 𝑑𝑚 then             𝑆𝑘,𝛼(𝑛) = 

𝛼𝑘+1

𝑘+1
      (4), 

where α > 0 is a finite real number.  

Proof: 

 From the definition, 

𝑆𝑘,𝛼(𝑛) =  ∫ 𝑡𝑘

𝛼

−𝛼

(𝑚) 𝑑𝑚 

           By Faulhaber’s Formula (see [1]) which states that  

 1𝑘 + 2𝑘 + ⋯ + 𝑚𝑘 =
𝑚𝑘+1

𝑘+1
+

𝑚

2

𝑘
+ 𝑘

𝑚𝑘− 1

12
+ 𝐶𝑘−3𝑚𝑘−3 + 𝐶𝑘−5𝑚𝑘−5 + ⋯ +𝐶1𝑚   (5) 

where 𝐶1is Bernoulli number and 𝐶𝑖’s are constants.  

In view of Faulhaber’s formula, since tk(m) is a polynomial in m of degree k + 1, we notice that  

∫ 𝑡𝑘
𝛼

𝑚= −𝛼
(𝑚) 𝑑𝑚 is integrable for all values of α, since [ − 𝛼, 𝛼] is bounded.   

 From (2), we get, 

𝑆𝑘,𝛼(𝑛) = ∫ (1𝑘 + 2𝑘 + ⋯ . . +𝑚𝑘) 𝑑𝑚
𝛼

−𝛼
         (6) 

           Substituting (5) in (6) we get  

= ∫ (
𝑚𝑘+1

𝑘+1
+

𝑚

2

𝑘
+ 𝑘

𝑚𝑘−1

12
+ 𝐶𝑘−3𝑚𝑘−3 + 𝐶𝑘−5𝑚𝑘−5 + ⋯ +𝐶1𝑚)

𝛼

−𝛼
 𝑑𝑚 

= ∫ (
𝑚

2

𝑘
)

𝛼

−𝛼
𝑑𝑚     (since k is even and  ∫ 𝑓(𝑥) 𝑑𝑥 = 0 𝑓𝑜𝑟 𝑜𝑑𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑓)

𝛼

−𝛼
 

= [
𝑚𝑘+1

2(𝑘+1)
]

−𝛼

𝛼

  

 = 2 ⋅
1

2
[

𝑚𝑘+1

𝑘+1
]

0

𝛼

 

 =  
𝛼𝑘+1

𝑘+1
 

 This completes the proof.  

Verification of Result (4)  

The above theorem can be verified for k = 2, 4, 6, 8,10 

  When k = 2, 𝑡2(𝑚) =   12 + 22 + 32 + 42 + ⋯ + 𝑚2 = 
2𝑚3+3𝑚2 +𝑚

6
  

  Substituting k = 2 in (5)     

𝑆2,𝛼(𝑛) =  ∫ 𝑡2
𝛼

−𝛼
(𝑚) 𝑑𝑚  = ∫ (

2𝑚3+3𝑚2 +𝑚

6
) 𝑑𝑚

𝛼

−𝛼
 = 

𝛼3

3
 

 When k = 4, 𝑡4(𝑚) =  14 + 24 + 34 + 44 + ⋯ + 𝑚4 =  (
𝑚5

5
+

𝑚4

2
+

𝑚3

3
−

𝑚

30
)     Substituting 𝑘 =

 4 in (5) 

𝑆4,𝛼(𝑛) =  ∫ 𝑡4
𝛼

−𝛼
(𝑚) 𝑑𝑚  = ∫ (

𝑚5

5
+

𝑚4

2
+

𝑚3

3
−

𝑚

30
) 𝑑𝑚

𝛼

−𝛼
 = 

𝛼5

5
 

When k = 6, 𝑡6(𝑚) =  16 + 26 + 36 + 46 + ⋯ + 𝑚6 = 
𝑚7

7
+

𝑚6

2
+

𝑚5

2
−

𝑚3

6
+

𝑚

42
 

Substituting 𝑘 =  6 in (5)  

𝑆6,𝛼(𝑛) =  ∫ 𝑡6
𝛼

−𝛼
(𝑚) 𝑑𝑚  = ∫ (

𝑚7

7
+

𝑚6

2
+

𝑚5

2
−

𝑚3

6
+

𝑚

42
) 𝑑𝑚

𝛼

−𝛼
 = 

𝛼7

7
 

When k = 8, 

  𝑡8(𝑚) =   18 + 28 + 38 + 48 … + 𝑚8 = 
𝑚9

9
+

𝑚8

2
+

2𝑚7

3
−

7𝑚5

15
+

2𝑚3

9
−

1

30
𝑚  

Substituting 𝑘 =  8 in (5) 

      𝑆8,𝛼(𝑛) = ∫ 𝑡8
𝛼

−𝛼
(𝑚) 𝑑𝑚 =∫ (

𝑚9

9
+

𝑚8

2
+

2𝑚7

3
−

7𝑚5

15
+

2𝑚3

9
−

1

30
𝑚) 𝑑𝑚

𝛼

−𝛼
 = 

𝛼9

9
            

When k = 10,  

𝑡10(𝑚) =   110 + 210 + 310 … + 𝑚10 = 
𝑚11

11
+

𝑚10

2
+

5𝑚9

6
− 𝑚7 + 𝑚5 −

1

2
𝑚3 +

5

66
 m 
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Substituting 𝑘 =  10 in (5) 

𝑆10,𝛼(𝑛) =  ∫ 𝑡10

𝛼

−𝛼

(𝑚) 𝑑𝑚  

                         = ∫ (
𝑚11

11
+

𝑚10

2
+

5𝑚9

6
− 𝑚7 + 𝑚5 −

1

2
𝑚3 +

5

66
𝑚) 𝑑𝑚

𝛼

−𝛼
 = 

𝛼11

11
 

4. Theorem 2 

 (a) If k is odd, then  

lim
𝛼→∞

1

𝛼𝑘+2 (𝑆𝑘,𝛼(𝑛)) =  
2

(𝑘+1)(𝑘+2)
     (7) 

  (b) If k is even, then 

lim
𝛼→∞

1

𝛼𝑘+1 (𝑆𝑘,𝛼(𝑛)) =  
1

𝑘+1
        (8) 

Proof: 

(a) From the definition of  𝑆𝑘,𝛼(𝑛) 

𝑆𝑘,𝛼(𝑛) =  ∫ 𝑡𝑘

𝛼

−𝛼

(𝑚) 𝑑𝑚 

= ∫ (
𝑚𝑘+1

𝑘+1
+

𝑚

2

𝑘
+ 𝑘

𝑚𝑘−1

12
+ 𝐶𝑘−3𝑚𝑘−3 + 𝐶𝑘−5𝑚𝑘−5 + ⋯ +𝐶1𝑚) 𝑑𝑚

𝛼

−𝛼
 

(since ∫ 𝑓(𝑥) 𝑑𝑥 = 0 𝑓𝑜𝑟 𝑜𝑑𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑓)
𝛼

−𝛼
 

lim
𝛼→∞

1

𝛼𝑘+2 (𝑆𝑘,𝛼(𝑛)) = lim
𝛼→∞

1

𝛼𝑘+2 ∫
𝑚𝑘+1

𝑘+1

𝛼

−𝛼
 𝑑𝑚  

                       = lim
𝛼→∞

 
1

𝛼𝑘+2  
1

𝑘+1
 (2 

𝛼𝑘+2

𝑘+2
 ) 

                       = 
1

(𝑘+1)(𝑘+2)
 

(b) If k is even, then 𝑆𝑘 ,𝛼 (𝑛) = 
𝛼𝑘+1

𝐾+1
    (from Theorem 1) 

         Therefore 

lim
𝛼→∞

 
1

𝛼𝑘+1
(𝑆𝑘,𝛼(𝑛)) = lim

𝛼→∞
 

1

𝛼𝑘+1
 (

𝛼𝑘+1

𝐾 + 1
) 

                                                       =  
1

𝑘+1
 

              This completes the proof. 

Verification of Result (7) 

The result obtained in (7) can be verified for odd k = 1,3,5,7,9 

When k = 1  

lim
𝛼→∞

 
1

𝛼𝑘+2
 (𝑆1,𝛼(𝑛)) = lim

𝛼→∞
 

1

𝛼3
 (

𝛼3

3
) =  

1

3
  = 

2

2(1+2)
 

When k = 3 

lim
𝛼→∞

 
1

𝛼𝑘+2  (𝑆3,𝛼(𝑛)) = lim
𝛼→∞

 
1

𝛼5  (
𝛼5

10
+

𝛼3

6
) =  

1

10
 = 

2

(3+1)(3+2)
 

 When k = 5 

lim
𝛼→∞

 
1

𝛼𝑘+2
 (𝑆5,𝛼(𝑛)) = lim

𝛼→∞
 

1

𝛼7
 (

1

3
(

𝛼7

7
+

𝛼5

2
−

𝛼3

6
)) =  

1

21
  = 

2

(5+1)(5+2)
 

 

 

When k = 7 

lim 
𝛼→∞

1

𝛼𝑘+2 (𝑆7,𝛼(𝑛)) = lim
𝛼→∞

 
1

𝛼9 (
1

3
(

𝛼9

12
+

𝛼7

4
−  

7𝛼5

20
+

𝛼3

6
)) =  

1

36
 =  

2

(7+1)(7+2)
 

When k = 9 

lim
𝛼→∞

1

𝛼𝑘+2 (𝑆9,𝛼(𝑛)) = lim
𝛼→∞

1

𝛼11 (
𝛼11

55
+

𝛼9

6
−

𝛼7

5
+

𝛼5

5
) =  

1

55
  = 

2

(9+1)(9+2)
 

Verification of Result (8) 

The result obtained in (8) can be verified for k = 2,4,6,8,10 
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when k = 2 

lim
𝛼→∞

 
1

𝛼3
(𝑆2,𝛼(𝑛)) = lim

𝛼→∞
 

1

𝛼3
(

𝛼3

3
) =  

1

3
 

when k = 4 

lim 
𝛼→∞

1

𝛼5
((𝑆4,𝛼(𝑛)) = lim 

𝛼→∞

1

𝛼5
(

𝛼5

5
) =  

1

5
 

when k =6 

lim
𝛼→∞

 
1

𝛼7
((𝑆6 ,𝛼(𝑛)) = lim 

𝛼→∞

1

𝛼7
(

𝛼7

7
) =  

1

7
 

when k = 8 

lim
𝛼→∞

1

𝛼9
((𝑆8,𝛼(𝑛)) = lim

𝛼→∞

1

𝛼9
(

𝛼9

9
) =  

1

9
 

when k = 10 

lim
𝛼→∞

1

𝛼11
((𝑆10 ,𝛼(𝑛)) = lim

𝛼→∞

1

𝛼11
(

𝛼11

11
) =  

1

11
 

Conclusion 

In this paper, we have attempted to investigate methods of Summability theory by making a particular 

divergent series to convergent through a definite integral defined over a bounded interval. In doing so, 

we obtained three results as given in (4), (7) and (8). We notice that if the interval in (3) is unbounded, 

then 𝑆𝑘,𝛼(𝑛) is not summable. By considering suitable definite integrals and intervals, we can always 

generalize or create new results similar to those of obtained in this paper.   
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